Cheapter-14
PZz`©k Aa¨vq
m¤¢vebv
cvV m¤úwK©Z MyiæZ¡c~Y©
welqvw`
¾ m¤¢vebvi mv‡_
RwoZ wKQz k‡ãi aviYv :
¾ ˆ`e cixÿv (Random Experiment) : hLb †Kv‡bv cixÿvi m¤¢ve¨ mKj djvdj Av‡M †_‡K Rvbv
_v‡K wKš‘ cixÿvwU‡Z †Kv‡bv GKwU wbw`©ó †Póvq Kx djvdj Avm‡e Zv wbwðZ K‡i ejv hvq
bv, G‡K ˆ`e cixÿv e‡j| †hgb, GKUv gy`ªv wb‡ÿc cixÿvi m¤¢ve¨ djvdj Head (H), Tail (T) n‡e, Zv Avgiv Av‡M †_‡KB Rvwb wKš‘ †Kvb djvdjwU
NU‡e gy`ªvwU wb‡ÿ‡ci c~‡e© Zv Avgiv wbwðZ K‡i ej‡Z cvwi bv| myZivs gy`ªv wb‡ÿc
cixÿv GKUv ˆ`e cixÿv|
¾ NUbv (Event) : †Kv‡bv cixÿvi djvdj ev djvd‡ji mgv‡ek‡K NUbv e‡j| D`vniY¯^iƒc GKUv Q°v
wb‡ÿc cixÿvq Ô3' cvIqv GKUv NUbv| Avevi †Rvo msL¨v cvIqvI GKwU
NUbv|
¾ mgm¤¢ve¨ NUbvewj
(Equally Likely Events) : †Kv‡bv cixÿvi NUbv¸‡jv NUvi m¤¢vebv mgvb nq A_©vr
GKwU AciwUi †P‡q †ewk ev Kg m¤¢ve¨ bv nq, Z‡e NUbv¸‡jv‡K mgm¤¢ve¨ e‡j| †hgb
GKUv wbi‡cÿ gy`ªv wb‡ÿ‡c †nW ev †Uj Avmvi m¤¢vebv mgvb mgvb| myZivs †nW Avmv I
†Uj Avmv NUbv `yBwU mgm¤¢ve¨ NUbv|
¾ ci¯úi wew”Qbœ
NUbvewj (Mutually Exclusive Events) : †Kv‡bv cixÿvq hw` GKUv NUbv NU‡j Ab¨Uv A_ev Ab¨
NUbv¸‡jv bv NU‡Z cv‡i Z‡e D³ NUbv¸‡jv‡K ci¯úi wew”Qbœ NUbv e‡j| †hgb, GKUv
wbi‡cÿ gy`ªv wb‡ÿc Ki‡j †nW Avmv ev †Uj Avmv `yBwU wew”Qbœ NUbv| †Kbbv †nW
Avm‡j †Uj Avm‡Z cv‡i bv| Avevi †Uj Avm‡j †nW Avm‡Z cv‡i bv| A_©vr †nW I †Uj
GKmv‡_ Avm‡Z cv‡i bv|
¾ AbyK‚j djvdj (Favourable Outcomes) : †Kv‡bv cixÿvq GKUv NUbvi ¯^c‡ÿi djvdj‡K D³ NUbvi AbyK‚j djvdj e‡j| †hgb,
GKwU Q°v wb‡ÿc Ki‡j we‡Rvo msL¨v nIqvi AbyK‚j djvdj 3 wU|
¾ bgybv‡ÿÎ (Sample Space) : †Kv‡bv ˆ`e cixÿvi m¤¢ve¨ mKj djvdj wb‡q MwVZ †mU‡K bgybv‡ÿÎ e‡j| GKUv
gy`ªv wb‡ÿc Ki‡j `yBwU m¤¢ve¨ djvdj cvIqv hvq| h_v †nW (H) I †Uj (T). GLb S Øviv G cixÿ‡Yi djvd‡ji †mU‡K m~wPZ Ki‡j bgybv‡ÿÎ S = {H, T}.
¾ bgybv we›`y (Sample Point) : bgybv‡ÿ‡Îi cÖwZwU Dcv`vb‡K djvd‡ji bgybv we›`y
e‡j| GKUv gy`ªv GKevi wb‡ÿc cixÿvq bgybv‡ÿÎ S =
{H, T} Ges GLv‡b H, T
cÖ‡Z¨‡KB GK GKwU bgybv we›`y|
¾ `ywU we‡kl ai‡bi NUbv:
wbwðZ
NUbv :
†Kv‡bv cixÿvq †h NUbv Aek¨B NU‡e G‡K wbwðZ NUbv e‡j|
D`vniY
:
AvMvgxKvj m~h© c~e© w`K †_‡K DV‡e AvR m~h© cwðg w`‡K A¯Í hv‡e| G¸‡jvi cÖ‡Z¨KwU wbwðZ
NUbvi m¤¢vebv|
¾ Am¤¢e NUbv : †Kv‡bv cixÿvq †h NUbv KL‡bv NU‡e bv A_©vr NU‡Z cv‡i bv G‡K Am¤¢e NUbv
e‡j| Am¤¢e NUbvi m¤¢vebv me mgq k~b¨ nq|
D`vniY :
AvMvgxKvj m~h© cwðg w`‡K DV‡e A_ev m~h© c~e©w`‡K A¯Í hv‡e, Am¤¢e NUbvi m¤¢vebv
k~b¨| G¸‡jvi cÖ‡Z¨KwU NUbvB Am¤¢e NUbv|
GK bR‡i G Abykxjbx‡Z e¨eüZ m~Îmg~n :
l †Kv‡bv NUbv NUvi m¤¢vebv =
l †Kv‡bv NUbv NUv Ges bv NUvi
m¤¢vebvi †hvMdj|
l †h‡Kv‡bv NUbvi
m¤¢vebv 0 †_‡K 1 Gi g‡a¨ _vK‡e|
l A NUbv NUvi m¤¢vebv P(A) n‡j O < P(A) < 1
l hw` †Kv‡bv GKwU cixÿ‡Yi †gvU
m¤¢ve¨ djvdj A Ges Aci GKwU cixÿ‡Yi †gvU m¤¢ve¨ djvdj B nq Zvn‡j cixÿv `yBwU GK‡Î msNwUZ n‡j †gvU m¤¢ve¨ djvdj = A ´ B
l bgybv‡ÿ‡Îi AvKvi †ek eo n‡j Probability tree Gi mvnv‡h¨ bgybv‡ÿÎ ˆZwi Kiv hvq Ges wewfbœ NUbvi
m¤¢vebv wbY©q Kiv hvq|
Abykxjbxi cÖkœ I mgvavb
1. GKwU
Q°v gvi‡j 3 DVvi m¤¢vebv †KvbwU?
L M N
wb‡Pi Z_¨ †_‡K (2Ñ3) b¤^i cÖ‡kœi DËi `vI :
GKwU _wj‡Z bxj ej 12wU, mv`v ej 16wU Ges Kv‡jv ej 20wU Av‡Q| ˆ`efv‡e
GKUv ej †bIqv n‡jv|
2. ejwU
bxj nIqvi m¤¢vebv KZ?
K L M
3. ejwU
mv`v bv nIqvi m¤¢vebv KZ?
K M N
wb‡gœi Z_¨ †_‡K (4Ñ6) b¤^i cÖ‡kœi DËi `vI :
GKwU gy`ªv‡K wZbevi wb‡ÿc Kiv n‡jv|
4. me©vwaK
evi H Avmvi m¤¢vebv KZ?
1 evi L 2 evi M 3 evi N 4 evi
5. me‡P‡q Kg msL¨K evi T
Avmvi m¤¢vebv KZ?
K 0 L M 1 N 2
[ mwVK DËi : ]
6. PÆMÖvg
AvenvIqv Awd‡mi wi‡cvU© Abyhvqx 2012 mv‡ji RyjvB gv‡mi 1g
mßv‡n e„wó n‡q‡Q †gvU 5 w`b| †mvgevi e„wó bv nIqvi m¤¢vebv KZ?
K M N 1
cÖkœ \ 7 \ 30wU wU‡K‡U 1 †_‡K 30 ch©šÍ µwgK b¤^i †`qv Av‡Q| wU‡KU¸‡jv fv‡jvfv‡e wgwk‡q
GKwU wU‡KU ˆ`efv‡e †bqv n‡jv| wU‡KUwU (i) †Rvo msL¨v (ii) Pvi Øviv wefvR¨ (iii) 8 Gi †P‡q †QvU (iv) 22 Gi †P‡q eo-nIqvi m¤¢vebv¸‡jv wbY©q Ki|
mgvavb : wU‡KU¸‡jv‡Z 1 †_‡K 30 ch©šÍ µwgK b¤^i
†`Iqv Av‡Q| myZivs mgMÖ m¤¢ve¨ djvdj 30|
i. 1 †_‡K 30 ch©šÍ µwgK b¤^‡ii g‡a¨ †gvU
†Rvo msL¨v 15wU| †Rvo msL¨v
cvIqvi AbyK‚j NUbv = 15wU
\ P †Rvo msL¨v =
= = (Ans.)
ii. 1 †_‡K 30 ch©šÍ µwgK b¤^‡ii g‡a¨ 4 Øviv wefvR¨ msL¨v 7wU h_v : 4, 8, 12, 16, 20, 24, 28| myZivs AbyK‚j djvdj 7wU|
\ P (4 Øviv wefvR¨) = (Ans.)
iii. 1 †_‡K 30 ch©šÍ µwgK b¤^‡ii
g‡a¨ 8 Gi †P‡q †QvU µwgK b¤^i 7wU| h_v : 1, 2, 3, 4, 5, 6, 7
myZivs AbyK‚j djvdj 7wU|
\ P (8 Gi †P‡q †QvU) = (Ans.)
iv. wU‡KU¸‡jv‡Z 22 Gi †P‡q eo µwgK b¤^i
8wU h_v : 23, 24, 25, 26, 27,
28, 29, 30.
myZivs AbyK‚j djvdj 8wU|
\ P (22 Gi †P‡q eo) = = (Ans.)
cÖkœ \ 8 \ †Kv‡bv GKwU jUvwi‡Z 570wU wU‡KU wewµ n‡q‡Q| iwng 15wU wU‡KU wK‡b‡Q| wU‡KU¸‡jv fv‡jvfv‡e wgwk‡q GKwU
wU‡KU ˆ`efv‡e cÖ_g cyi¯‹v‡ii Rb¨ †Zvjv n‡jv| iwn‡gi cÖ_g cyi¯‹vi cvIqvi m¤¢vebv
KZ?
mgvavb
: †gvU wU‡KU wewµ n‡q‡Q = 570wU
iwng wU‡KU wK‡b‡Q = 15wU
\ iwn‡gi
cÖ_g cyi¯‹vi cvIqvi m¤¢vebv = =
(Ans.)
cÖkœ \ 9 \ GKUv Q°v GKevi wb‡ÿc Kiv n‡j †Rvo
msL¨v A_ev wZb Øviv wefvR¨ msL¨v DVvi m¤¢vebv KZ?
mgvavb : GKUv Q°v wb‡ÿc cixÿvq bgybv †ÿÎ : {1, 2,
3, 4, 5, 6}
\ mgMÖ m¤¢ve¨ djvdj 6
GKUv Q°vq †Rvo msL¨v Av‡Q 3wU, h_v : {2, 4, 6}| myZivs †Rvo
msL¨v cvIqvi AbyK‚j djvdj 3wU
\ P (†Rvo msL¨v) = = =
Avevi, 3 Øviv wefvR¨ msL¨v 2wU, h_v : {3,
6}| myZivs
3 Øviv wefvR¨ msL¨v
cvIqvi AbyK‚j djvdj 2wU|
\ P (3 Øviv wefvR¨ msL¨v) = = =
†h‡nZz †Rvo msL¨v Ges 3 Øviv wefvR¨ msL¨v Df‡qi g‡a¨ 6 AšÍfy©³| myZivs †Rvo
msL¨v Ges 3 Øviv wefvR¨ msL¨v
cvIqvi AbyK‚j djvdj 1wU|
\ P (†Rvo msL¨v Ges 3 Øviv
wefvR¨ msL¨v) =
\ P
(†Rvo msL¨v A_ev
3 Øviv wefvR¨) =
P (†Rvo msL¨v) + P (3 Øviv wefvR¨) - P (†Rvo msL¨v Ges 3 Øviv wefvR¨)
= + - = = = (Ans.)
cÖkœ \ 10 \ †Kv‡bv
GKwU ¯^v¯’¨ †K‡›`ªi wi‡cvU© Abyhvqx 155 wkï Kg IR‡bi, 386 wkï ¯^vfvweK IR‡bi Ges 98wU wkï †ewk IR‡bi Rb¥ †bq| GLvb n‡Z GKwU wkï
ˆ`efv‡e wbe©vPb Ki‡j wbe©vwPZ wkïwU †ewk IR‡bi n‡e Gi m¤¢vebv KZ?
mgvavb : ¯^v¯’¨ †K‡›`ª †gvU
wkï Rb¥ †bq (155 + 386 + 98) = 639 Rb| ˆ`efv‡e GKRb wkï
wbe©vPb Ki‡j 639 R‡bi †h †Kv‡bv GKRb wkï
Avm‡Z cv‡i|
\ mgMÖ m¤¢ve¨ djvdj = 639
†ewk IR‡bi wkïi AbyK‚‡j m¤¢ve¨ djvdj = 98
myZivs †ewk IR‡bi wkï Rb¥ †bIqvi
m¤¢vebv
= (Ans.)
cÖkœ \ 11 \ `yB
nvRvi jvB‡mÝ cÖvß WªvBfvi GK eQ‡i wbgœwjwLZ msL¨K UªvwdK AvBb f½ K‡i|
UªvwdK AvBb f‡½i msL¨v |
WªvBfv‡ii msL¨v |
0 1 2 3 4 5 ev Zvi AwaK |
1910 46 18 12 9 5 |
GKRb WªvBfvi‡K ˆ`efv‡e wbe©vPb Ki‡j WªvBfviwUi 1wU AvBb f½ Kivi m¤¢vebv KZ?
WªvBfviwUi 4 Gi AwaK AvBb f½ Kivi m¤¢vebv
KZ?
mgvavb : †gvU WªvBfv‡ii msL¨v
= (1910 + 46 + 18 + 12 + 9 + 5) Rb =
2000
Rb
1wU UªvwdK AvBb f½ K‡i‡Q Ggb WªvBfv‡ii msL¨v = 46
\ wbe©vwPZ
WªvBfviwUi 1wU AvBb f½ Kivi m¤¢vebv =
=
Avevi,
4 Gi AwaK AvBb f½ K‡i‡Q Ggb WªvBfv‡ii msL¨v = 5
\ wbe©vwPZ
WªvBfviwUi 4 Gi AwaK AvBb f½ Kivi m¤¢vebv =
=
wb‡Y©q m¤¢vebv Ges
cÖkœ \ 12 \ †Kv‡bv GKwU d¨v±wi‡Z wb‡qvMK…Z
†jvK‡`i Kv‡Ri aiY Abyhvqx wbgœfv‡e †kªwYK…Z Kiv hvq :
†kªwYKiY |
msL¨v |
e¨e¯’vcbvq cwi`k©K
wn‡m‡e Drcv`b
Kv‡R Awdwmqvj Kv‡R |
157 52 1473 215 |
GKRb‡K ˆ`efv‡e wbe©vPb Ki‡j †jvKwU e¨e¯’vcbvq wb‡qvwRZ Gi m¤¢vebv KZ?
†jvKwU e¨e¯’vcbvq A_ev Drcv`b Kv‡R wb‡qvwRZ Gi m¤¢vebv KZ?
†jvKwU Drcv`b Kv‡R
wb‡qvwRZ bq Gi m¤¢vebv KZ?
mgvavb : d¨v±wi‡Z wb‡qvMK…Z
†gvU †jv‡Ki msL¨v =
(157 + 52 + 1473 + 215) Rb = 1897 Rb
e¨e¯’vcbvq wb‡qvwRZ †jv‡Ki msL¨v 157 Rb
\ †jvKwUi
e¨e¯’vcbvq wb‡qvwRZ nIqvi m¤¢vebv = (Ans.)
Avevi, Drcv`b Kv‡R
wb‡qvwRZ †jv‡Ki msL¨v = 1473 Rb
\ Drcv`b
Kv‡R wb‡qvwRZ nIqvi m¤¢vebv =
myZivs †jvKwUi
e¨e¯’vcbvq A_ev Drcv`b Kv‡R wb‡qvwRZ nIqvi
m¤¢vebv = + = = (Ans.)
Drcv`b Kv‡R wb‡qvwRZ
bq Ggb †jv‡Ki msL¨v
=
(157 +
52 + 215) = 424
\ †jvKwU
Drcv`b Kv‡R wb‡qvwRZ bq Ggb m¤¢vebv = (Ans.)
অর্ডিনারি আইটির নীতিমালা মেনে কমেন্ট করুন। প্রতিটি কমেন্ট রিভিউ করা হয়।
comment url